R FAQ

Frequently Asked Questions on R

Kurt Hornik
and the R Core Team

Table of Contents

1 Introduction.................. 1
1.1 Legalese. ... 1
1.2 Obtaining this document i i 1
1.3 Citing this document 1
1.4 Notation ...t e 1
1.5 Feedback. ... 1

2 RBasics..........oo i 2
2.1 What is R7. .. 2
2.2 What machines does Rrunon?.............. ..., 3
2.3 What is the current version of R7......... 3
2.4 How can R be obtained?............ 3
2.5 Howcan R beinstalled?............ i, 3

2.5.1 How can R be installed (Unix-like)............ 4

2.5.2 How can R be installed (Windows).......................... 5

2.5.3 How can R be installed (Mac)cooio... 5
2.6 Are there Unix-like binaries for R?..............................)
2.7 What documentation exists for R?............ 6
2.8 CHUNEG R .o vttt e e e 7
2.9 What mailing lists exist for R?o il 7
2.10 What is CRAN T ... 8
2.11 Can I use R for commercial purposes?coovvonn... 9
212 Whyis Rnamed R7...... .o i 9
2.13 What is the R Foundation?................, 10
2.14 What is R-Forge? o 10

3 Rand S 11
3.1 What I8 ST .o 11
3.2 What is S-PLUS ... 11
3.3 What are the differences between R and S7..................... 11

3.3.1 Lexical sCOpIngottt 12
3.3.2 Models . .o 15
3.3.3 Others ..o 15
3.4 Is there anything R can do that S-PLUS cannot?................ 17
3.5 What is R-plus?. 18

4 R Web Interfaces............................... 19

5 R Add-On Packages............................ 20
5.1 Which add-on packages exist for R? 20

5.1.1 Add-on packagesin R i 20

5.1.2 Add-on packages from CRAN, 20
5.1.3 Add-on packages from Bioconductor 21
5.1.4 Other add-on packages. ... 21
5.2 How can add-on packages be installed? 21
5.3 How can add-on packages be used? 22
5.4 How can add-on packages be removed?.......................... 23
5.5 How can I create an R package?o ... 24
5.6 How can I contribute to R7....... i i 24
Rand Emacs...................... 25
6.1 Is there Emacs support for R?....... ..o il 25
6.2 Should I run R from within Emacs? 25
6.3 Debugging R from within Emacs 26
R Miscellanea................................... 27
7.1 How can I set components of a list to NULL?.................. 27
7.2 How can I save my workspace? ...t 27
7.3 How can I clean up my workspace?t 27
7.4 How can I get eval() and D() to work?....................... 27
7.5 Why do my matrices lose dimensions? 28
7.6 How does autoloading work? il 28
7.7 How should I set options? o i, 28
7.8 How do file names work in Windows?................ 29
7.9 Why does plotting give a color allocation error?................ 29
7.10 How do I convert factors to numeric? 29
7.11 Are Trellis displays implemented in R? 29
7.12 What are the enclosing and parent environments?.............. 30
7.13 How can I substitute into a plot label?........... 30
7.14 What are valid names?c.o it 31
7.15 Are GAMs implemented in R?........., 31
7.16 Why is the output not printed when I source() a file?.......... 31
7.17 Why does outer() behave strangely with my function? 32
7.18 Why does the output from anova() depend on the order of factors
inthe model? i 32

7.19 How do I produce PNG graphics in batch mode?............... 33
7.20 How can I get command line editing to work?.................. 33
7.21 How can I turn a string into a variable? 33
7.22 Why do lattice/trellis graphics not work?...................... 34
7.23 How can I sort the rows of a data frame? 34
7.24 Why does the help.start() search engine not work?............. 34
7.25 Why did my .Rprofile stop working when I updated R?........ 34
7.26 Where have all the methods gone?................ 35
7.27 How can I create rotated axis labels? 35
7.28 Why is read.table() so inefficient?.............. oL 35
7.29 What is the difference between package and library? 35

7.30 I installed a package but the functions are not there 36

ii

7.31 Why doesn’t R think these numbers are equal? 36

7.32 How can I capture or ignore errors in a long simulation? 37
7.33 Why are powers of negative numbers wrong? 37
7.34 How can I save the result of each iteration in a loop into a
separate file? 37
7.35 Why are p-values not displayed when using lmer ()7 38
7.36 Why are there unwanted borders, lines or grid-like artifacts when
viewing a plot saved to a PS or PDF file?...................... 38
7.37 Why does backslash behave strangely inside strings?........... 38
7.38 How can I put error bars or confidence bands on my plot? 39
7.39 How do I create a plot with two y-axes? 40
7.40 How do I access the source code for a function?................ 40
7.41 Why does summary() report strange results for the R~2 estimate
when I fit a linear model with no intercept?.................... 40
7.42 Why is R apparently not releasing memory? 40
7.43 How can I enable secure https downloads in R?................ 41
7.44 How can I get CRAN package binaries for outdated versions of
R 41
R Programming........................... 43
8.1 How should I write summary methods? 43
8.2 How can I debug dynamically loaded code? 43
8.3 How can I inspect R objects when debugging? 43
8.4 How can I change compilation flags?............... 43
8.5 How can I debug S4 methods? 43
RBugs............. 44
9.1 What is a bug?. ... 44
9.2 How toreport a bug..........oooiiiiiiiiiiii i 44

iii

1 Introduction

1.1 Legalese
Copyright (©) 1998-2020 Kurt Hornik
Copyright (© 2021-2024 R Core Team

This document is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Copies of the GNU General Public License versions are available at

https://www.R-project.org/Licenses/

1.2 Obtaining this document

The latest version of this document is always available from
https://CRAN.R-project.org/doc/manuals/

From there, you can obtain versions converted to HTML and PDF.

1.3 Citing this document

In publications, please refer to this FAQ as Hornik and R Core Team (2024), “The R FAQ”,
and give the above, official URL:

OMiscq,

author = {Kurt Hornik and the R Core Team},

title = {{R} {FAQ}},

year = {2024},

url = {https://CRAN.R-project.org/doc/manuals/R-FAQ.html}
3

1.4 Notation

Everything should be pretty standard. ‘R>’ is used for the R prompt, and a ‘$’ for the shell
prompt (where applicable).

1.5 Feedback

Feedback via email to R-devel@R-project.org is most welcome.

Features specific to the Windows and macOS ports of R are described in the “R for Win-
dows FAQ” (https://CRAN.R-project.org/bin/windows/base/rw-FAQ.html) and the “R
for Mac OS X FAQ” (https://CRAN.R-project.org/bin/macosx/RMac0SX-FAQ.html). If
you have information on Mac or Windows systems that you think should be added to this
document, please let us know.

https://www.R-project.org/Licenses/
https://CRAN.R-project.org/doc/manuals/
https://CRAN.R-project.org/doc/manuals/R-FAQ.html
https://CRAN.R-project.org/doc/manuals/R-FAQ.pdf
mailto:R-devel@R-project.org
https://CRAN.R-project.org/bin/windows/base/rw-FAQ.html
https://CRAN.R-project.org/bin/windows/base/rw-FAQ.html
https://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html
https://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html

2 R Basics

2.1 What is R?

R is a system for statistical computation and graphics. It consists of a language plus a
run-time environment with graphics, a debugger, access to certain system functions, and
the ability to run programs stored in script files.

The design of R has been heavily influenced by two existing languages: Becker, Cham-
bers & Wilks’ S (see Section 3.1 [What is S?], page 11) and Sussman’s Scheme (http://
community.schemewiki.org/?scheme-faq). Whereas the resulting language is very sim-
ilar in appearance to S, the underlying implementation and semantics are derived from
Scheme. See Section 3.3 [What are the differences between R and S?], page 11, for further
details.

The core of R is an interpreted computer language which allows branching and looping
as well as modular programming using functions. Most of the user-visible functions in R
are written in R. It is possible for the user to interface to procedures written in the C, C++,
or FORTRAN languages for efficiency. The R distribution contains functionality for a large
number of statistical procedures. Among these are: linear and generalized linear models,
nonlinear regression models, time series analysis, classical parametric and nonparametric
tests, clustering and smoothing. There is also a large set of functions which provide a
flexible graphical environment for creating various kinds of data presentations. Additional
modules (“add-on packages”) are available for a variety of specific purposes (see Chapter 5
[R Add-On Packages|, page 20).

R was initially written by Ross Thaka and Robert Gentleman at the Department of
Statistics of the University of Auckland in Auckland, New Zealand. In addition, a large
group of individuals has contributed to R by sending code and bug reports.

Since mid-1997 there has been a core group (the “R Core Team”) who can modify the
R source code archive, currently consisting of

John Chambers,
Peter Dalgaard,
Robert Gentleman,
Kurt Hornik,

Ross Thaka,

Tomas Kalibera,
Michael Lawrence,
Uwe Ligges,
Thomas Lumley,
Martin Maechler,
Sebastian Meyer,
Paul Murrell,
Martyn Plummer,
Brian Ripley,
Deepayan Sarkar,
Duncan Temple Lang,
Luke Tierney, and

http://community.schemewiki.org/?scheme-faq
http://community.schemewiki.org/?scheme-faq
mailto:Ross.Ihaka@R-project.org
mailto:Robert.Gentleman@R-project.org

Chapter 2: R Basics 3

Simon Urbanek,

plus Heiner Schwarte up to October 1999, Guido Masarotto up to June 2003, Stefano Iacus
up to July 2014, Seth Falcon up to August 2015, Duncan Murdoch up to September 2017,
Martin Morgan up to June 2021, Douglas Bates up to March 2024, and Friedrich Leisch up
to April 2024.

R has a home page at https://www.R-project.org/. It is free software (https://www.
gnu.org/philosophy/free-sw.html) distributed under a GNU-style copyleft (https://
www.gnu.org/copyleft/copyleft.html), and an official part of the GNU (https://wuw.
gnu.org/) project (“GNU S”).

2.2 What machines does R run on?

R is being developed for the Unix-like, Windows and Mac families of operating systems.
Support for Mac OS Classic ended with R 1.7.1.

The current version of R will configure and build under a number of common Unix-like
(e.g., https://en.wikipedia.org/wiki/Unix-1like) platforms including cpu-linux-gnu
for the 1386, amd64/x86-64, alpha, arm, arm64, hppa, mips/mipsel, powerpc, s390x
and sparc CPUs (e.g., https://buildd.debian.org/build.php?&pkg=r-base),
386-hurd-gnu, cpu-kfreebsd-gnu for i386 and amd64, i386-pc-solaris, rs6000-ibm-aix,
sparc-sun-solaris, x86_64-apple-darwin, aarch64-apple-darwin, x86_64-unknown-freebsd
and x86_64-unknown-openbsd.

If you know about other platforms, please drop us a note.

2.3 What is the current version of R?

R uses a ‘major.minor.patchlevel’ numbering scheme. Based on this, there are the current
release version of R (‘r-release’) as well as two development versions of R, a patched version
of the current release (‘r-patched’) and one working towards the next minor or eventually
major (‘r-devel’) releases of R, respectively. New features are typically introduced in r-devel,
while r-patched is for bug fixes mostly.

See https://CRAN.R-project.org/sources.html for the current versions of r-release,
r-patched and r-devel.

2.4 How can R be obtained?

Sources, binaries and documentation for R can be obtained via CRAN, the “Comprehensive
R Archive Network” (see Section 2.10 [What is CRAN?], page 8).

Sources are also available via https://svn.R-project.org/R/, the R Subversion repos-
itory, but currently not via anonymous rsync (nor CVS).

Tarballs with daily snapshots of the r-devel and r-patched development versions of R
can be found at https://stat.ethz.ch/R/daily/.

2.5 How can R be installed?

https://www.R-project.org/
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/copyleft/copyleft.html
https://www.gnu.org/copyleft/copyleft.html
https://www.gnu.org/
https://www.gnu.org/
https://en.wikipedia.org/wiki/Unix-like
https://buildd.debian.org/build.php?&pkg=r-base
https://CRAN.R-project.org/sources.html
https://svn.R-project.org/R/
https://stat.ethz.ch/R/daily/

Chapter 2: R Basics 4

2.5.1 How can R be installed (Unix-like)

If R is already installed, it can be started by typing R at the shell prompt (of course,
provided that the executable is in your path).

If binaries are available for your platform (see Section 2.6 [Are there Unix-like binaries
for R?], page 5), you can use these, following the instructions that come with them.

Otherwise, you can compile and install R yourself, which can be done very easily under
a number of common Unix-like platforms (see Section 2.2 [What machines does R run on?],
page 3). The file INSTALL that comes with the R distribution contains a brief introduction,
and the “R Installation and Administration” guide (see Section 2.7 [What documentation
exists for R?], page 6) has full details.

Note that you need a FORTRAN 90 compiler as well as a C compiler to build R.

In the simplest case, untar the R source code, change to the directory thus created, and
issue the following commands (at the shell prompt):

$./configure
$ make

If these commands execute successfully, the R binary and a shell script front-end called R
are created and copied to the bin directory. You can copy the script to a place where users
can invoke it, for example to /usr/local/bin. In addition, HTML versions of the R man-
uals (e.g., R-exts.html, the “Writing R Extensions” manual) are built in the doc/manual
subdirectory.

Use make pdf to build PDF (Portable Document Format) versions of the R manuals,
including fullrefman.pdf (an R object reference index). Manuals written in the GNU
Texinfo system can also be converted to info files suitable for reading online with Emacs
or stand-alone GNU Info; use make info to create these versions (note that this requires
Makeinfo version 4.5).

Finally, use make check to find out whether your R system works correctly.
You can also perform a “system-wide” installation using make install. By default, this

will install to the following directories:

${prefix}/bin
the front-end shell script

${prefix}/man/manl
the man page

${prefix}/1ib/R
all the rest (libraries, on-line help system, . ..). This is the “R Home Directory”
(R_HOME) of the installed system.

In the above, prefix is determined during configuration (typically /usr/local) and can
be set by running configure with the option

$./configure --prefix=/where/you/want/R/to/go
(E.g., the R executable will then be installed into /where/you/want/R/to/go/bin.)

To install info and PDF versions of the manuals, use make install-info and make
install-pdf, respectively.

Chapter 2: R Basics 5

2.5.2 How can R be installed (Windows)

The bin/windows directory of a CRAN site contains binaries for a base distribution and
add-on packages from CRAN to run on 64-bit versions of Windows 7 and later on x86_64
chips (R 4.1.3 was the last version of R to support 32-bit Windows). The Windows version
of R was created by Robert Gentleman and Guido Masarotto; Brian Ripley and Duncan
Murdoch made substantial contributions and it is now being maintained by other members
of the R Core team.

The same directory has links to snapshots of the r-patched and r-devel versions of R.

See the “R for Windows FAQ” (https://CRAN.R-project.org/bin/windows/base/
rw-FAQ.html) for more details.

2.5.3 How can R be installed (Mac)

The bin/macosx directory of a CRAN site contains a standard Apple installer package to
run on macOS 10.13 (‘High Sierra’) or later, and another which runs only on ‘Apple Silicon’
Macs under macOS 11 (‘Big Sur’) or later. Once downloaded and executed, the installer
will install the current release of R and R.app, the macOS GUI. This port of R for macOS
is maintained by Simon Urbanek (and previously by Stefano Iacus). The “R for macOS
FAQ” (https://CRAN.R-project.org/bin/macosx/RMac0SX-FAQ.html) has more details.

Snapshots of the r-patched and r-devel versions of R are available as Apple installer
packages at https://mac.R-project.org.

2.6 Are there Unix-like binaries for R?

Binary distributions of R are available on many Unix-like OSes: only some can be mentioned
here so check your OS’s search facilities to see if one is available for yours.

The bin/1linux directory of a CRAN site contains R packages for Debian and Ubuntu.

Debian packages, maintained by Dirk Eddelbuettel, have long been part of the Debian
distribution, and can be accessed through APT, the Debian package maintenance tool.
Use e.g. apt-get install r-base r-recommended to install the R environment and rec-
ommended packages. If you also want to build R packages from source, also run apt-get
install r-base-dev to obtain the additional tools required for this. So-called “backports”
of the current R packages for at least the stable distribution of Debian are provided by Jo-
hannes Ranke, and available from CRAN. See https://CRAN.R-project.org/bin/linux/
debian/index.html for details on R Debian packages and installing the backports, which
should also be suitable for other Debian derivatives. Native backports for Ubuntu are pro-
vided by Michael Rutter, see https://CRAN.R-project.org/bin/linux/ubuntu/index.
html for instructions.

R binaries for Fedora, maintained by Tom “Spot” Callaway, are provided as part of the
Fedora distribution and can be accessed through yum, the RPM installer/updater. Note
that the “Software” application (gnome-software), which is the default GUI for software
installation in Fedora 20, cannot be used to install R. It is therefore recommended to use
the yum command line tool. The Fedora R RPM is a “meta-package” which installs all
the user and developer components of R (available separately as R-core and R-devel), as
well as R-java, which ensures that R is configured for use with Java. The R RPM also
installs the standalone R math library (1ibRmath and libRmath-devel), although this is

https://CRAN.R-project.org/bin/windows/base/rw-FAQ.html
https://CRAN.R-project.org/bin/windows/base/rw-FAQ.html
mailto:Simon.Urbanek@R-project.org
https://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html
https://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html
https://mac.R-project.org
https://CRAN.R-project.org/bin/linux/debian/index.html
https://CRAN.R-project.org/bin/linux/debian/index.html
https://CRAN.R-project.org/bin/linux/ubuntu/index.html
https://CRAN.R-project.org/bin/linux/ubuntu/index.html

Chapter 2: R Basics 6

not necessary to use R. When a new version of R is released, there may be a delay of up
to 2 weeks until the Fedora RPM becomes publicly available, as it must pass through the
Fedora review process. RPMs for a selection of R packages are also provided by Fedora.
The Extra Packages for Enterprise Linux (EPEL) project (https://docs.fedoraproject.
org/en-US/epel/) provides ports of the Fedora RPMs for RedHat Enterprise Linux and
compatible distributions (e.g., Centos, Scientific Linux, Oracle Linux).

See https://CRAN.R-project.org/bin/linux/suse/README.html for information
about RPMs for openSUSE.

No other binary distributions are currently publicly available via CRAN.

2.7 What documentation exists for R?

Online documentation for most of the functions and variables in R exists, and can be printed
on-screen by typing help(name) (or 7name) at the R prompt, where name is the name of
the topic help is sought for. (In the case of unary and binary operators and control-flow
special forms, the name may need to be quoted.)

This documentation can also be made available as one reference manual for on-line read-
ing in HTML and PDF formats, and as hardcopy via IWTEX, see Section 2.5 [How can R be
installed?], page 3. An up-to-date HTML version is always available for web browsing at
https://stat.ethz.ch/R-manual/.

The R distribution also comes with the following manuals.

e “An Introduction to R” (R-intro) includes information on data types, programming
elements, statistical modeling and graphics. This document is based on the “Notes on
S-Prus” by Bill Venables and David Smith.

e “Writing R Extensions” (R-exts) currently describes the process of creating R add-on
packages, writing R documentation, R’s system and foreign language interfaces, and
the R API.

e “R Data Import/Export” (R-data) is a guide to importing and exporting data to and
from R.

e “The R Language Definition” (R-lang), a first version of the “Kernighan & Ritchie
of R”, explains evaluation, parsing, object oriented programming, computing on the
language, and so forth.

e “R Installation and Administration” (R-admin).

e “R Internals” (R-ints) is a guide to R’s internal structures. (Added in R 2.4.0.)

An annotated bibliography (BibTEX format) of R-related publications can be found at
https://www.R-project.org/doc/bib/R.bib
Books on R by R Core Team members include

John M. Chambers (2008), “Software for Data Analysis: Programming with
R”. Springer, New York, ISBN 978-0-387-75935-7, https://johnmchambers.
su.domains/Rbook/.

Peter Dalgaard (2008), “Introductory Statistics with R”, 2nd edition. Springer,
ISBN 978-0-387-79053-4, http://publicifsv.sund.ku.dk/~pd/ISwR.html.

https://docs.fedoraproject.org/en-US/epel/
https://docs.fedoraproject.org/en-US/epel/
https://CRAN.R-project.org/bin/linux/suse/README.html
https://stat.ethz.ch/R-manual/
https://www.R-project.org/doc/bib/R.bib
https://johnmchambers.su.domains/Rbook/
https://johnmchambers.su.domains/Rbook/
http://publicifsv.sund.ku.dk/~pd/ISwR.html

Chapter 2: R Basics 7

Robert Gentleman (2008), “R Programming for Bioinformatics”. Chapman &
Hall/CRC, Boca Raton, FL, ISBN 978-1-420-06367-7, https://bioconductor.
org/help/publications/books/r-programming-for-bioinformatics/.

Stefano M. Iacus (2008), “Simulation and Inference for Stochastic Differential
Equations: With R Examples”. Springer, New York, ISBN 978-0-387-75838-1.

Deepayan Sarkar (2007), “Lattice: Multivariate Data Visualization with R”.
Springer, New York, ISBN 978-0-387-75968-5.

W. John Braun and Duncan J. Murdoch (2007), “A First Course in Statistical
Programming with R”. Cambridge University Press, Cambridge, ISBN 978-
0521872652.

P. Murrell (2005), “R Graphics”, Chapman & Hall/CRC, ISBN 1-584-88486-X,
https://www.stat.auckland.ac.nz/"paul/RGraphics/rgraphics.html.

William N. Venables and Brian D. Ripley (2002), “Modern Applied Statistics
with S” (4th edition). Springer, ISBN 0-387-95457-0, https://www.stats.ox.
ac.uk/pub/MASS4/.

Jose C. Pinheiro and Douglas M. Bates (2000), “Mixed-Effects Models in S and
S-Plus”. Springer, ISBN 0-387-98957-0.

Last, but not least, Ross’ and Robert’s experience in designing and implementing
R is described in Thaka & Gentleman (1996), “R: A Language for Data Analysis
and Graphics”, Journal of Computational and Graphical Statistics, 5, 299-314
(doi: 10.1080/10618600.1996.10474713 (https://doi.org/10.1080/10618600.1996.
10474713))

2.8 Citing R

To cite R in publications, use

©@Manual{,
title = {R: A Language and Environment for Statistical
Computing},
author = {{R Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austrial,
year = YEAR,
url = {https://www.R-project.org}
3

where YEAR is the release year of the version of R used and can determined as
R.version$year.

Citation strings (or BibTgX entries) for R and R packages can also be obtained by
citation().

2.9 What mailing lists exist for R?

Thanks to Martin Maechler, there are several mailing lists devoted to R, including the
following:

https://bioconductor.org/help/publications/books/r-programming-for-bioinformatics/
https://bioconductor.org/help/publications/books/r-programming-for-bioinformatics/
https://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
https://www.stats.ox.ac.uk/pub/MASS4/
https://www.stats.ox.ac.uk/pub/MASS4/
https://doi.org/10.1080/10618600.1996.10474713
https://doi.org/10.1080/10618600.1996.10474713
mailto:Martin.Maechler@R-project.org

Chapter 2: R Basics 8

R-announce
A moderated list for major announcements about the development of R and
the availability of new code.

R-packages
A moderated list for announcements on the availability of new or enhanced
contributed packages.

R-help The ‘main’ R mailing list, for discussion about problems and solutions encoun-
tered using R, including using R packages in the standard R distribution and
on CRAN; announcements (not covered by ‘R-announce’ or ‘R-packages’); the
availability of new functionality for R and documentation of R; and for posting
nice examples and benchmarks.

R-devel This list is for questions and discussion about code development in R.

R-package—-devel
A list which provides a forum for those developing R packages.

Please read the posting guide (https://www.R-project.org/posting-guide.html) before
sending anything to any mailing list.

Note in particular that R-help is intended to be comprehensible to people who want to
use R to solve problems but who are not necessarily interested in or knowledgeable about
programming. Questions likely to prompt discussion unintelligible to non-programmers
(e.g., questions involving C or C++) should go to R-devel.

Convenient access to information on these lists, subscription, and archives is provided by
the web interface at https://stat.ethz.ch/mailman/listinfo/. One can also subscribe
(or unsubscribe) via email, e.g. to R-help by sending ‘subscribe’ (or ‘unsubscribe’) in the
body of the message (not in the subject!) to R-help-request@lists.R-project.org.

Send email to R-help@lists.R-project.org to send a message to everyone on the R-
help mailing list. Subscription and posting to the other lists is done analogously, with
‘R-help’ replaced by ‘R-announce’, ‘R-packages’, and ‘R-devel’, respectively. Note that
the R-announce and R-packages lists are gatewayed into R-help. Hence, you should sub-
scribe to either of them only in case you are not subscribed to R-help.

It is recommended that you send mail to R-help rather than only to the R Core developers
(who are also subscribed to the list, of course). This may save them precious time they can
use for constantly improving R, and will typically also result in much quicker feedback for
yourself.

Of course, in the case of bug reports it would be very helpful to have code which reliably
reproduces the problem. Also, make sure that you include information on the system and
version of R being used. See Chapter 9 [R Bugs|, page 44, for more details.

See https://www.R-project.org/mail.html for more information on the R mailing
lists.

2.10 What is CRAN?

The “Comprehensive R Archive Network” (CRAN) is a collection of sites which carry identi-
cal material, consisting of the R distribution(s), the contributed extensions, documentation
for R, and binaries.

https://www.R-project.org/posting-guide.html
https://stat.ethz.ch/mailman/listinfo/
mailto:R-help-request@lists.R-project.org
mailto:R-help@lists.R-project.org
https://www.R-project.org/mail.html

Chapter 2: R Basics 9

The CRAN main site at WU (Wirtschaftsuniversitdt Wien) in Austria can be found at
the URL

https://CRAN.R-project.org/

and is mirrored daily to many sites around the world. See https://CRAN.R-project.org/
mirrors.html for a complete list of mirrors. Please use the CRAN site closest to you to
reduce network load.

From CRAN, you can obtain the latest official release of R, daily snapshots of R (copies of
the current source trees), as gzipped and bzipped tar files, a wealth of additional contributed
code, as well as prebuilt binaries for various operating systems (Linux, Mac OS Classic,
macOS, and MS Windows). CRAN also provides access to documentation on R, existing
mailing lists and the R Bug Tracking system.

Since March 2016, “old” material is made available from a central CRAN archive server
(https://CRAN-archive.R-project.org/).

Please always use the URL of the master site when referring to CRAN.

2.11 Can I use R for commercial purposes?

R is released under the GNU General Public License (GPL). If you have any questions
regarding the legality of using R in any particular situation you should bring it up with
your legal counsel. We are in no position to offer legal advice.

It is the opinion of the R Core Team that one can use R for commercial purposes (e.g.,
in business or in consulting). The GPL, like all Open Source licenses, permits all and any
use of the package. It only restricts distribution of R or of other programs containing code
from R. This is made clear in clause 6 (“No Discrimination Against Fields of Endeavor”)
of the Open Source Definition (https://opensource.org/osd):

The license must not restrict anyone from making use of the program in a
specific field of endeavor. For example, it may not restrict the program from
being used in a business, or from being used for genetic research.

It is also explicitly stated in clause 0 of the GPL, which says in part

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is
not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program.

Most add-on packages, including all recommended ones, also explicitly allow commercial
use in this way. A few packages are restricted to “non-commercial use”; you should contact
the author to clarify whether these may be used or seek the advice of your legal counsel.

None of the discussion in this section constitutes legal advice. The R Core Team does
not provide legal advice under any circumstances.

2.12 Why is R named R?

The name is partly based on the (first) names of the first two R authors (Robert Gentleman
and Ross Thaka), and partly a play on the name of the Bell Labs language ‘S’ (see Section 3.1
[What is S?], page 11).

https://CRAN.R-project.org/
https://CRAN.R-project.org/mirrors.html
https://CRAN.R-project.org/mirrors.html
https://CRAN-archive.R-project.org/
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://opensource.org/osd

Chapter 2: R Basics 10

2.13 What is the R Foundation?

The R Foundation is a not for profit organization working in the public interest. It was
founded by the members of the R Core Team in order to provide support for the R project
and other innovations in statistical computing, provide a reference point for individuals, in-
stitutions or commercial enterprises that want to support or interact with the R development
community, and to hold and administer the copyright of R software and documentation.
See https://www.R-project.org/foundation/ for more information.

2.14 What is R-Forge?

R-Forge (https://R-Forge.R-project.org/) offers a central platform for the development
of R packages, R-related software and further projects. It is based on GForge (https://
en.wikipedia.org/wiki/GForge) offering easy access to the best in SVN, daily built and
checked packages, mailing lists, bug tracking, message boards/forums, site hosting, perma-
nent file archival, full backups, and total web-based administration. For more information,
see the R-Forge web page and Stefan Theufil and Achim Zeileis (2009), “Collaborative
software development using R-Forge”, The R Journal, 1(1):9-14.

https://www.R-project.org/foundation/
https://R-Forge.R-project.org/
https://en.wikipedia.org/wiki/GForge
https://en.wikipedia.org/wiki/GForge
https://journal.R-project.org/

11

3 Rand S

3.1 What is S?

S is a very high level language and an environment for data analysis and graphics. In 1998,
the Association for Computing Machinery (ACM) presented its Software System Award to
John M. Chambers, the principal designer of S, for
the S system, which has forever altered the way people analyze, visualize, and
manipulate data . ..
S is an elegant, widely accepted, and enduring software system, with conceptual
integrity, thanks to the insight, taste, and effort of John Chambers.
The evolution of the S language is characterized by four books by John Chambers and
coauthors, which are also the primary references for S.
e Richard A. Becker and John M. Chambers (1984), “S. An Interactive Environment for
Data Analysis and Graphics,” Monterey: Wadsworth and Brooks/Cole.

This is also referred to as the “Brown Book”, and of historical interest only.

e Richard A. Becker, John M. Chambers and Allan R. Wilks (1988), “The New S Lan-
guage,” London: Chapman & Hall.
This book is often called the “Blue Book”, and introduced what is now known as S
version 2.

e John M. Chambers and Trevor J. Hastie (1992), “Statistical Models in S,” London:
Chapman & Hall.
This is also called the “White Book”, and introduced S version 3, which added struc-
tures to facilitate statistical modeling in S.

e John M. Chambers (1998), “Programming with Data,” New York: Springer, ISBN
0-387-98503-4 (https://johnmchambers.su.domains/Sbook/).
This “Green Book” describes version 4 of S, a major revision of S designed by John
Chambers to improve its usefulness at every stage of the programming process.

See https://johnmchambers.su.domains/papers/96.7.ps for further information on
the “Evolution of the S Language”.

3.2 What is S-PLus?

S-PLus is a value-added version of S sold by TIBCO Software Inc (https://www.tibco.
com/) as ‘TIBCO Spotfire S+’. See https://en.wikipedia.org/wiki/S-PLUS for more
information.

3.3 What are the differences between R and S?

We can regard S as a language with three current implementations or “engines”, the “old
S engine” (S version 3; S-PLUS 3.x and 4.x), the “new S engine” (S version 4; S-PLUS 5.x
and above), and R. Given this understanding, asking for “the differences between R and S”
really amounts to asking for the specifics of the R implementation of the S language, i.e.,
the difference between the R and S engines.

For the remainder of this section, “S” refers to the S engines and not the S language.

https://johnmchambers.su.domains/Sbook/
https://johnmchambers.su.domains/papers/96.7.ps
https://www.tibco.com/
https://www.tibco.com/
https://en.wikipedia.org/wiki/S-PLUS

Chapter 3: R and S 12

3.3.1 Lexical scoping

Contrary to other implementations of the S language, R has adopted an evaluation model
in which nested function definitions are lexically scoped. This is analogous to the evaluation
model in Scheme.

This difference becomes manifest when free variables occur in a function. Free variables
are those which are neither formal parameters (occurring in the argument list of the func-
tion) nor local variables (created by assigning to them in the body of the function). In S,
the values of free variables are determined by a set of global variables (similar to C, there
is only local and global scope). In R, they are determined by the environment in which the
function was created.

Consider the following function:

cube <- function(n) {
sq <- function() n * n
n * sqQ)

}

Under S, sq() does not “know’

S> cube(2)

Error in sq(): Object "n" not found
Dumped

S>n <-3

S> cube(2)

[1] 18

In R, the “environment” created when cube () was invoked is also looked in:

Y

about the variable n unless it is defined globally:

R> cube(2)
[1] 8

As a more “interesting” real-world problem, suppose you want to write a function which
returns the density function of the r-th order statistic from a sample of size n from a
(continuous) distribution. For simplicity, we shall use both the distribution and density
functions distribution as explicit arguments. (Example compiled from various postings by
Luke Tierney.)

The S-PLUS documentation for call() basically suggests the following:

dorder <- function(n, r, pfun, dfun) {
f <- function(x) NULL
con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
PF <- call(substitute(pfun), as.name("x"))
DF <- call(substitute(dfun), as.name("x"))
f[[length(£)]1] <-
call("x", con,
call("x", call(""", PF, r - 1),
call("*", call(""", call("-", 1, PF), n - 1),
DF)))

Chapter 3: R and S 13

Rather tricky, isn’t it? The code uses the fact that in S, functions are just lists of special
mode with the function body as the last argument, and hence does not work in R (one
could make the idea work, though).

A version which makes heavy use of substitute() and seems to work under both S and
R is

dorder <- function(n, r, pfun, dfun) {
con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
eval (substitute(function(x) K * PF(x)"a * (1 - PF(x))"b * DF(x),
list(PF = substitute(pfun), DF = substitute(dfun),
a=r-1,b=n-r, K= con)))

}
(the eval() is not needed in S).
However, in R there is a much easier solution:

dorder <- function(n, r, pfun, dfun) {
con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
function(x) {
con * pfun(x)"(r - 1) * (1 - pfun(x))"(n - r) * dfun(x)
}
}

This seems to be the “natural” implementation, and it works because the free variables in
the returned function can be looked up in the defining environment (this is lexical scope).

Note that what you really need is the function closure, i.e., the body along with all
variable bindings needed for evaluating it. Since in the above version, the free variables in
the value function are not modified, you can actually use it in S as well if you abstract out
the closure operation into a function MC() (for “make closure”):

dorder <- function(n, r, pfun, dfun) {
con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
MC(function(x) {
con * pfun(x)"(r - 1) * (1 - pfun(x))"(n - r) * dfun(x)
1,
list(con = con, pfun = pfun, dfun = dfun, r = r, n = n))

}

Given the appropriate definitions of the closure operator, this works in both R and S,
and is much “cleaner” than a substitute/eval solution (or one which overrules the default
scoping rules by using explicit access to evaluation frames, as is of course possible in both
R and S).

For R, MC() simply is
MC <- function(f, env) f

(lexical scope!), a version for S is

Chapter 3: R and S 14

MC <- function(f, env = NULL) {
env <- as.list(env)

if (mode(f) !'= "function")
stop(paste("not a function:", £f))
if (length(env) > 0 && any(names(env) == ""))

stop(paste("not all arguments are named:", env))
fargs <- if(length(f) > 1) f[1:(length(f) - 1)] else NULL
fargs <- c(fargs, env)
if (any(duplicated(names(fargs))))
stop(paste("duplicated arguments:", paste(names(fargs)),
collapse = ", "))
fbody <- f[length(f)]
cf <- c(fargs, fbody)
mode (cf) <- "function"
return(cf)

}

Similarly, most optimization (or zero-finding) routines need some arguments to be opti-
mized over and have other parameters that depend on the data but are fixed with respect to
optimization. With R scoping rules, this is a trivial problem; simply make up the function
with the required definitions in the same environment and scoping takes care of it. With S,
one solution is to add an extra parameter to the function and to the optimizer to pass in
these extras, which however can only work if the optimizer supports this.

Nested lexically scoped functions allow using function closures and maintaining lo-
cal state. A simple example (taken from Abelson and Sussman) is obtained by typing
demo ("scoping") at the R prompt. Further information is provided in the standard R
reference “R: A Language for Data Analysis and Graphics” (see Section 2.7 [What docu-
mentation exists for R?], page 6) and in Robert Gentleman and Ross Ihaka (2000), “Lexi-
cal Scope and Statistical Computing”, Journal of Computational and Graphical Statistics,
9, 491-508 (doi: 10.1080/10618600.2000.10474895 (https://doi.org/10.1080/10618600.
2000.10474895)).

Nested lexically scoped functions also imply a further major difference. Whereas S stores
all objects as separate files in a directory somewhere (usually .Data under the current
directory), R does not. All objects in R are stored internally. When R is started up it grabs
a piece of memory and uses it to store the objects. R performs its own memory management
of this piece of memory, growing and shrinking its size as needed. Having everything in
memory is necessary because it is not really possible to externally maintain all relevant
“environments” of symbol/value pairs. This difference also seems to make R faster than S.

The down side is that if R crashes you will lose all the work for the current session. Saving
and restoring the memory “images” (the functions and data stored in R’s internal memory
at any time) can be a bit slow, especially if they are big. In S this does not happen, because
everything is saved in disk files and if you crash nothing is likely to happen to them. (In fact,
one might conjecture that the S developers felt that the price of changing their approach to
persistent storage just to accommodate lexical scope was far too expensive.) Hence, when
doing important work, you might consider saving often (see Section 7.2 [How can I save my
workspace?], page 27) to safeguard against possible crashes. Other possibilities are logging

https://doi.org/10.1080/10618600.2000.10474895
https://doi.org/10.1080/10618600.2000.10474895

Chapter 3: R and S 15

your sessions, or have your R commands stored in text files which can be read in using
source().

Note: If you run R from within Emacs (see Chapter 6 [R and Emacs], page 25),
you can save the contents of the interaction buffer to a file and conveniently
manipulate it using ess-transcript-mode, as well as save source copies of all
functions and data used.

3.3.2 Models

There are some differences in the modeling code, such as

e Whereas in S, you would use 1Im(y ~ x~3) to regress y on x~3, in R, you have to insulate
powers of numeric vectors (using I()), i.e., you have to use Im(y ~ I(x"3)).

e The GLM family objects are implemented differently in R and S. The same functionality
is available but the components have different names.

e Option na.action is set to "na.omit" by default in R, but not set in S.

e Terms objects are stored differently. In S a terms object is an expression with attributes,
in R it is a formula with attributes. The attributes have the same names but are mostly
stored differently.

e Finally, in R y ” x + 0 is an alternative to y ~ x - 1 for specifying a model with no
intercept. Models with no parameters at all can be specified by y ~ 0.

3.3.3 Others

Apart from lexical scoping and its implications, R follows the S language definition in the
Blue and White Books as much as possible, and hence really is an “implementation” of S.
There are some intentional differences where the behavior of S is considered “not clean”.
In general, the rationale is that R should help you detect programming errors, while at the
same time being as compatible as possible with S.

Some known differences are the following.

e InR,ifxisalist, then x[1] <= NULL and x[[i]] <- NULL remove the specified elements
from x. The first of these is incompatible with S, where it is a no-op. (Note that you
can set elements to NULL using x[i] <- 1ist(NULL).)

e In S, the functions named .First and .Last in the .Data directory can be used
for customizing, as they are executed at the very beginning and end of a session,
respectively.

In R, the startup mechanism is as follows. Unless —-—-no-environ was given on the
command line, R searches for site and user files to process for setting environment
variables. Then, R searches for a site-wide startup profile unless the command line
option —-no-site-file was given. This code is loaded in package base. Then, unless
--no-init-file was given, R searches for a user profile file, and sources it into the
user workspace. It then loads a saved image of the user workspace from .RData in
case there is one (unless —-no-restore-data or --no-restore were specified). Next,
a function .First() is run if found on the search path. Finally, function .First.sys
in the base package is run. When terminating an R session, by default a function .Last
is run if found on the search path, followed by .Last.sys. If needed, the functions
.First() and .Last() should be defined in the appropriate startup profiles. See the
help pages for .First and .Last for more details.

Chapter 3: R and S 16

e In R, T and F are just variables being set to TRUE and FALSE, respectively, but are not
reserved words as in S and hence can be overwritten by the user. (This helps e.g. when
you have factors with levels "T" or "F".) Hence, when writing code you should always
use TRUE and FALSE.

e In R, dyn.load() can only load shared objects, as created for example by R CMD SHLIB.

e In R, attach() currently only works for lists and data frames, but not for directories.
(In fact, attach() also works for R data files created with save(), which is analogous
to attaching directories in S.) Also, you cannot attach at position 1.

e Categories do not exist in R, and never will as they are deprecated now in S. Use factors
instead.

e In R, For() loops are not necessary and hence not supported.

e In R, assign() uses the argument envir= rather than where= as in S.

e The random number generators are different, and the seeds have different length.
e R passes integer objects to C as int * rather than long * as in S.

e R has no single precision storage mode. However, as of version 0.65.1, there is a single
precision interface to C/FORTRAN subroutines.

e By default, 1s() returns the names of the objects in the current (under R) and global
(under S) environment, respectively. For example, given

x <= 1; fun <- function() {y <- 1; 1sQ}

then fun() returns "y" in R and "x" (together with the rest of the global environment)
in S.

e R allows for zero-extent matrices (and arrays, i.e., some elements of the dim attribute
vector can be 0). This has been determined a useful feature as it helps reducing the
need for special-case tests for empty subsets. For example, if x is a matrix, x[, FALSE]
is not NULL but a “matrix” with 0 columns. Hence, such objects need to be tested for
by checking whether their length() is zero (which works in both R and S), and not
using is.null().

e Named vectors are considered vectors in R but not in S (e.g., is.vector(c(a =1:3))
returns FALSE in S and TRUE in R).

e Data frames are not considered as matrices in R (i.e., if DF is a data frame, then
is.matrix (DF) returns FALSE in R and TRUE in S).

e R by default uses treatment contrasts in the unordered case, whereas S uses the Helmert
ones. This is a deliberate difference reflecting the opinion that treatment contrasts are
more natural.

e In R, the argument of a replacement function which corresponds to the right hand side
must be named ‘value’. E.g., f(a) <- b is evaluated as a <- "f<-"(a, value =b). S
always takes the last argument, irrespective of its name.

e In S, substitute() searches for names for substitution in the given expression in
three places: the actual and the default arguments of the matching call, and the local
frame (in that order). R looks in the local frame only, with the special rule to use
a “promise” if a variable is not evaluated. Since the local frame is initialized with
the actual arguments or the default expressions, this is usually equivalent to S, until
assignment takes place.

Chapter 3: R and S 17

e In S, the index variable in a for () loop is local to the inside of the loop. In R it is
local to the environment where the for () statement is executed.

e In S, tapply(simplify=TRUE) returns a vector where R returns a one-dimensional
array (which can have named dimnames).

e In S(-Prus) the C locale is used, whereas in R the current operating system locale is
used for determining which characters are alphanumeric and how they are sorted. This
affects the set of valid names for R objects (for example accented chars may be allowed
in R) and ordering in sorts and comparisons (such as whether "aA" < "Bb" is true or
false). From version 1.2.0 the locale can be (re-)set in R by the Sys.setlocale()
function.

e In S, missing(arg) remains TRUE if arg is subsequently modified; in R it doesn’t.
e From R version 1.3.0, data.frame strips I() when creating (column) names.

e In R, the string "NA" is not treated as a missing value in a character variable. Use
as.character (NA) to create a missing character value.

e R disallows repeated formal arguments in function calls.

e In S, dump(), dput() and deparse() are essentially different interfaces to the same
code. In R from version 2.0.0, this is only true if the same control argument is used,
but by default it is not. By default dump() tries to write code that will evaluate to
reproduce the object, whereas dput () and deparse() default to options for producing
deparsed code that is readable.

e In R, indexing a vector, matrix, array or data frame with [using a character vector
index looks only for exact matches (whereas [[and $ allow partial matches). In S, [
allows partial matches.

e S has a two-argument version of atan and no atan2. A call in S such as atan(x1, x2)
is equivalent to R’s atan2(x1, x2). However, beware of named arguments since S’s
atan(x = a, y = b) is equivalent to R’s atan2(y = a, x = b) with the meanings of x
and y interchanged. (R used to have undocumented support for a two-argument atan
with positional arguments, but this has been withdrawn to avoid further confusion.)

e Numeric constants with no fractional and exponent (i.e., only integer) part are taken
as integer in S-PLUS 6.x or later, but as double in R.

There are also differences which are not intentional, and result from missing or incorrect
code in R. The developers would appreciate hearing about any deficiencies you may find
(in a written report fully documenting the difference as you see it). Of course, it would be
useful if you were to implement the change yourself and make sure it works.

3.4 Is there anything R can do that S-PLUS cannot?

Since almost anything you can do in R has source code that you could port to S-PLUS with
little effort there will never be much you can do in R that you couldn’t do in S-PLUS if you
wanted to. (Note that using lexical scoping may simplify matters considerably, though.)

R offers several graphics features that S-PLUS does not, such as finer handling of line
types, more convenient color handling (via palettes), gamma correction for color, and, most
importantly, mathematical annotation in plot texts, via input expressions reminiscent of
TEX constructs. See the help page for plotmath, which features an impressive on-line ex-
ample. More details can be found in Paul Murrell and Ross Thaka (2000), “An Approach

Chapte