R Data Import/Export

Version 4.4.1 (2024-06-14)

R Core Team

This manual is for R, version 4.4.1 (2024-06-14).
Copyright (©) 2000-2024 R Core Team

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work
is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into an-
other language, under the above conditions for modified versions, except that this
permission notice may be stated in a translation approved by the R Core Team.

Table of Contents

Acknowledgements........ 1
1 Introduction.............. 2
L OIS . o e e 2
1101 ENcodings ..ottt 3

1.2 Export to text flleso 3
1.8 XML oo 5

2 Spreadsheet-like data.................. 6
2.1 Variations on read.table. e 6
2.2 Fixed-width-format files. 8
2.3 Data Interchange Format (DIF)..... ... o i 8
2.4 Using scan directlyo 9
2.5 Re-shaping data i e 10
2.6 Flat contingency tables i e 11

3 Importing from other statistical systems.................... 12
3.1 Epilnfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat................c...coii.. 12
3.2 OCAVE . .ottt 13

4 Relational databases i 14
4.1 Why use a database? e 14
4.2 Overview of RDBMSS ... 14
4.2.1 SQL QUETIES . .« e vttt et ettt e 15

4.2.2 Data Gy PeS. . oot 16

4.3 R interface packages 16
4.3.1 Packages using DBI. 17

4.3.2 Package RODBC o 18

5 Binary files....... ... 20
5.1 Binary data formats 20
5.2 dBase files (DBEF) ..o 20

6 Image files...... 21
7 ConnectionsS.oouiiii e 22
7.1 Types of CONNECTIONSttt e e 22
7.2 Output t0 CONMNECTIONSottt et e et e 23
7.3 Input from connections e 23
7.3.1 Pushback 24

7.4 Listing and manipulating connections......... i i 24
7.5 Binary COnnectionso.uut ittt 24

7.5.1 Special values. e 25

ii

8 Network interfaces 26
8.1 Reading from SoCketst 26
8.2 Using download.filettt e 26

9 Reading Excel spreadsheets 27

Appendix A References................cciiiiiiiiiii, 28

Function and variable index............. 29

Concept indexX.............. . 31

Acknowledgements

The relational databases part of this manual is based in part on an earlier manual by Douglas
Bates and Saikat DebRoy. The principal author of this manual was Brian Ripley.

Many volunteers have contributed to the packages used here. The principal authors of the
packages mentioned are

DBI (https://CRAN.R-project.org/package=DBI):
David A. James

dataframes2xls (https://CRAN.R-project.org/package=dataframes2xls):
Guido van Steen

foreign (https://CRAN.R-project.org/package=foreign):
Thomas Lumley, Saikat DebRoy, Douglas Bates, Duncan Murdoch and
Roger Bivand

gdata (https://CRAN.R-project.org/package=gdata):
Gregory R. Warnes

ncdf4 (https://CRAN.R-project.org/package=ncdf4):
David Pierce

rJava (https://CRAN.R-project.org/package=rJava):
Simon Urbanek

RJDBC (https://CRAN.R-project.org/package=RIDBC):
Simon Urbanek

RMySQL (https://CRAN.R-project.org/package=RMySQL):
David James and Saikat DebRoy

RNetCDF (https://CRAN.R-project.org/package=RNetCDF):
Pavel Michna

RODBC (https://CRAN.R-project.org/package=RODBC):
Michael Lapsley and Brian Ripley

ROracle (https://CRAN.R-project.org/package=R0racle):
David A. James

RPostgreSQL (https://CRAN.R-project.org/package=RPostgreSQL):
Sameer Kumar Prayaga and Tomoaki Nishiyama

RSPerl: Duncan Temple Lang

RSPython:
Duncan Temple Lang

RSQLite (https://CRAN.R-project.org/package=RSQLite):
David A. James

SJava: John Chambers and Duncan Temple Lang

WriteXLS (https://CRAN.R-project.org/package=WriteXLS):
Marc Schwartz

XLConnect (https://CRAN.R-project.org/package=XLConnect):
Mirai Solutions GmbH

XML (https://CRAN.R-project.org/package=XML):
Duncan Temple Lang

Brian Ripley is the author of the support for connections.

https://CRAN.R-project.org/package=DBI
https://CRAN.R-project.org/package=dataframes2xls
https://CRAN.R-project.org/package=foreign
https://CRAN.R-project.org/package=gdata
https://CRAN.R-project.org/package=ncdf4
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=RJDBC
https://CRAN.R-project.org/package=RMySQL
https://CRAN.R-project.org/package=RNetCDF
https://CRAN.R-project.org/package=RODBC
https://CRAN.R-project.org/package=ROracle
https://CRAN.R-project.org/package=RPostgreSQL
https://CRAN.R-project.org/package=RSQLite
https://CRAN.R-project.org/package=WriteXLS
https://CRAN.R-project.org/package=XLConnect
https://CRAN.R-project.org/package=XML

1 Introduction

Reading data into a statistical system for analysis and exporting the results to some other system
for report writing can be frustrating tasks that can take far more time than the statistical analysis
itself, even though most readers will find the latter far more appealing.

This manual describes the import and export facilities available either in R itself or via
packages which are available from CRAN or elsewhere.

Unless otherwise stated, everything described in this manual is (at least in principle) available
on all platforms running R.

In general, statistical systems like R are not particularly well suited to manipulations of
large-scale data. Some other systems are better than R at this, and part of the thrust of this
manual is to suggest that rather than duplicating functionality in R we can make another sys-
tem do the work! (For example Therneau & Grambsch (2000) commented that they preferred
to do data manipulation in SAS and then use package survival (https://CRAN.R-project.
org/package=survival) in S for the analysis.) Database manipulation systems are often very
suitable for manipulating and extracting data: several packages to interact with DBMSs are
discussed here.

There are packages to allow functionality developed in languages such as Java, perl and
python to be directly integrated with R code, making the use of facilities in these languages
even more appropriate. (See the rJava (https://CRAN.R-project.org/package=rJava) pack-
age from CRAN.)

It is also worth remembering that R like S comes from the Unix tradition of small re-usable
tools, and it can be rewarding to use tools such as awk and perl to manipulate data before
import or after export. The case study in Becker, Chambers & Wilks (1988, Chapter 9) is an
example of this, where Unix tools were used to check and manipulate the data before input to
S. The traditional Unix tools are now much more widely available, including for Windows.

This manual was first written in 2000, and the number of scope of R packages has increased
a hundredfold since. For specialist data formats it is worth searching to see if a suitable package
already exists.

1.1 Imports

The easiest form of data to import into R is a simple text file, and this will often be acceptable for
problems of small or medium scale. The primary function to import from a text file is scan, and
this underlies most of the more convenient functions discussed in Chapter 2 [Spreadsheet-like
datal], page 6.

However, all statistical consultants are familiar with being presented by a client with a
memory stick (formerly, a floppy disc or CD-R) of data in some proprietary binary format,
for example ‘an Excel spreadsheet’ or ‘an SPSS file’. Often the simplest thing to do is to use
the originating application to export the data as a text file (and statistical consultants will
have copies of the most common applications on their computers for that purpose). However,
this is not always possible, and Chapter 3 [Importing from other statistical systems]|, page 12,
discusses what facilities are available to access such files directly from R. For Excel spreadsheets,
the available methods are summarized in Chapter 9 [Reading Excel spreadsheets], page 27.

In a few cases, data have been stored in a binary form for compactness and speed of access.
One application of this that we have seen several times is imaging data, which is normally stored
as a stream of bytes as represented in memory, possibly preceded by a header. Such data formats
are discussed in Chapter 5 [Binary files], page 20, and Section 7.5 [Binary connections|, page 24.

For much larger databases it is common to handle the data using a database management
system (DBMS). There is once again the option of using the DBMS to extract a plain file, but

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=rJava

Chapter 1: Introduction 3

for many such DBMSs the extraction operation can be done directly from an R package: See
Chapter 4 [Relational databases], page 14. Importing data via network connections is discussed
in Chapter 8 [Network interfaces|, page 26.

1.1.1 Encodings

Unless the file to be imported from is entirely in ASCII, it is usually necessary to know how it
was encoded. For text files, a good way to find out something about its structure is the file
command-line tool (for Windows, included in Rtools). This reports something like

text.Rd: UTF-8 Unicode English text

text2.dat: IS0-8859 English text

text3.dat: Little-endian UTF-16 Unicode English character data,
with CRLF line terminators

intro.dat: UTF-8 Unicode text

intro.dat: UTF-8 Unicode (with BOM) text

Modern Unix-alike systems, including macOS, are likely to produce UTF-8 files. Windows may
produce what it calls ‘Unicode’ files (UCS-2LE or just possibly UTF-16LE"). Otherwise most files
will be in a 8-bit encoding unless from a Chinese/Japanese/Korean locale (which have a wide
range of encodings in common use). It is not possible to automatically detect with certainty
which 8-bit encoding (although guesses may be possible and file may guess as it did in the
example above), so you may simply have to ask the originator for some clues (e.g. ‘Russian on
Windows’).

‘BOMSs’ (Byte Order Marks, https://en.wikipedia.org/wiki/Byte_order_mark) cause
problems for Unicode files. In the Unix world BOMs are rarely used, whereas in the Windows
world they almost always are for UCS-2/UTF-16 files, and often are for UTF-8 files. The file
utility will not even recognize UCS-2 files without a BOM, but many other utilities will refuse
to read files with a BOM and the IANA standards for UTF-16LE and UTF-16BE prohibit it. We
have too often been reduced to looking at the file with the command-line utility od or a hex
editor to work out its encoding.

Note that utf8 is not a valid encoding name (UTF-8 is), and macintosh is the most portable
name for what is sometimes called ‘Mac Roman’ encoding.

1.2 Export to text files

Exporting results from R is usually a less contentious task, but there are still a number of pitfalls.
There will be a target application in mind, and often a text file will be the most convenient
interchange vehicle. (If a binary file is required, see Chapter 5 [Binary files], page 20.)

Function cat underlies the functions for exporting data. It takes a file argument, and the
append argument allows a text file to be written via successive calls to cat. Better, especially if
this is to be done many times, is to open a file connection for writing or appending, and cat
to that connection, then close it.

The most common task is to write a matrix or data frame to file as a rectangular grid of
numbers, possibly with row and column labels. This can be done by the functions write.table
and write. Function write just writes out a matrix or vector in a specified number of columns
(and transposes a matrix). Function write.table is more convenient, and writes out a data
frame (or an object that can be coerced to a data frame) with row and column labels.

There are a number of issues that need to be considered in writing out a data frame to a text
file.

1 the distinction is subtle, https://en.wikipedia.org/wiki/UTF-16/UCS-2, and the use of surrogate pairs is
very rare.

https://en.wikipedia.org/wiki/Byte_order_mark
https://en.wikipedia.org/wiki/UTF-16/UCS-2

Chapter 1: Introduction 4

1. Precision

Most of the conversions of real /complex numbers done by these functions is to full precision,
but those by write are governed by the current setting of options(digits). For more
control, use format on a data frame, possibly column-by-column.

2. Header line
R prefers the header line to have no entry for the row names, so the file looks like

dist climb time
Greenmantle 2.5 650 16.083

Some other systems require a (possibly empty) entry for the row names, which is what
write.table will provide if argument col.names = NA is specified. Excel is one such system.

3. Separator

A common field separator to use in the file is a comma, as that is unlikely to appear in any
of the fields in English-speaking countries. Such files are known as CSV (comma separated
values) files, and wrapper function write.csv provides appropriate defaults. In some lo-
cales the comma is used as the decimal point (set this in write.table by dec = ",") and
there CSV files use the semicolon as the field separator: use write.csv2 for appropriate
defaults. There is an IETF standard for CSV files (which mandates commas and CRLF
line endings, for which use eol = "\r\n"), RFC4180 (see https://www.rfc-editor.org/
rfc/rfc4180), but what is more important in practice is that the file is readable by the
application it is targeted at.

Using a semicolon or tab (sep = "\t") are probably the safest options.
4. Missing values

By default missing values are output as NA, but this may be changed by argument na. Note
that NaNs are treated as NA by write.table, but not by cat nor write.

5. Quoting strings

By default strings are quoted (including the row and column names). Argument quote con-
trols if character and factor variables are quoted: some programs, for example Mondrian
(https://en.wikipedia.org/wiki/Mondrian_(software)), do not accept quoted strings.

Some care is needed if the strings contain embedded quotes. Three useful forms are

> df <- data.frame(a = I("a \" quote"))

> write.table(df)

llall

ll1" IIa \ll quotell

> write.table(df, gmethod = "double")

llall

"qm Mg """ quote"

> write.table(df, quote = FALSE, sep = ",")
a

1,a " quote

The second is the form of escape commonly used by spreadsheets.
6. Encodings

Text files do not contain metadata on their encodings, so for non-ASCII data the file needs
to be targetted to the application intended to read it. All of these functions can write to
a connection which allows an encoding to be specified for the file, and write.table has a
fileEncoding argument to make this easier.

https://www.rfc-editor.org/rfc/rfc4180
https://www.rfc-editor.org/rfc/rfc4180
https://en.wikipedia.org/wiki/Mondrian_(software)

Chapter 1: Introduction 5

The hard part is to know what file encoding to use. For use on Windows, it is best to use
what Windows calls ‘Unicode’?, that is "UTF-16LE". Using UTF-8 is a good way to make
portable files that will not easily be confused with any other encoding, but even macOS
applications (where UTF-8 is the system encoding) may not recognize them, and Windows
applications are most unlikely to. Apparently Excel:mac 2004/8 expected .csv files in
"macroman" encoding (the encoding used in much earlier versions of Mac OS).

Function write.matrix in package MASS (https://CRAN.R-project.org/package=MASS)
provides a specialized interface for writing matrices, with the option of writing them in blocks
and thereby reducing memory usage.

It is possible to use sink to divert the standard R output to a file, and thereby capture the
output of (possibly implicit) print statements. This is not usually the most efficient route, and
the options(width) setting may need to be increased.

Function write.foreign in package foreign (https://CRAN.R-project.org/
package=foreign) uses write.table to produce a text file and also writes a code file that will
read this text file into another statistical package. There is currently support for export to SAS,
SPSS and Stata.

1.3 XML

When reading data from text files, it is the responsibility of the user to know and to specify the
conventions used to create that file, e.g. the comment character, whether a header line is present,
the value separator, the representation for missing values (and so on) described in Section 1.2
[Export to text files|, page 3. A markup language which can be used to describe not only content
but also the structure of the content can make a file self-describing, so that one need not provide
these details to the software reading the data.

The eXtensible Markup Language — more commonly known simply as XML — can be used to
provide such structure, not only for standard datasets but also more complex data structures.
XML is becoming extremely popular and is emerging as a standard for general data markup and
exchange. It is being used by different communities to describe geographical data such as maps,
graphical displays, mathematics and so on.

XML provides a way to specify the file’s encoding, e.g.
<?xml version="1.0" encoding="UTF-8"7>
although it does not require it.

The XML (https://CRAN.R-project.org/package=XML) package provides general facili-
ties for reading and writing XML documents within R. Package StatDataML (https://CRAN.
R-project.org/package=StatDataML) on CRAN is one example building on XML (https://
CRAN.R-project.org/package=XML). Another interface to the libxml2 C library is provided by
package xml2 (https://CRAN.R-project.org/package=xml2).

YAML is another system for structuring text data, with emphasis on human-readability: it
is supported by package yaml (https://CRAN.R-project.org/package=yaml).

2 Even then, Windows applications may expect a Byte Order Mark which the implementation of iconv used
by R may or may not add depending on the platform.

https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=foreign
https://CRAN.R-project.org/package=foreign
https://CRAN.R-project.org/package=XML
https://CRAN.R-project.org/package=StatDataML
https://CRAN.R-project.org/package=StatDataML
https://CRAN.R-project.org/package=XML
https://CRAN.R-project.org/package=XML
https://CRAN.R-project.org/package=xml2
https://CRAN.R-project.org/package=yaml

2 Spreadsheet-like data

In Section 1.2 [Export to text files], page 3, we saw a number of variations on the format of a
spreadsheet-like text file, in which the data are presented in a rectangular grid, possibly with
row and column labels. In this section we consider importing such files into R.

2.1 Variations on read.table

The function read.table is the most convenient way to read in a rectangular grid of data.
Because of the many possibilities, there are several other functions that call read.table but
change a group of default arguments.

Beware that read.table is an inefficient way to read in very large numerical matrices: see
scan below.

Some of the issues to consider are:

1. Encoding
If the file contains non-ASCII character fields, ensure that it is read in the correct encoding.
This is mainly an issue for reading Latin-1 files in a UTF-8 locale, which can be done by
something like

read.table("file.dat", fileEncoding="latinl")

Note that this will work in any locale which can represent Latin-1 strings, but not many
Greek/Russian/Chinese/Japanese . . . locales.

2. Header line
We recommend that you specify the header argument explicitly, Conventionally the header
line has entries only for the columns and not for the row labels, so is one field shorter than
the remaining lines. (If R sees this, it sets header = TRUE.) If presented with a file that has
a (possibly empty) header field for the row labels, read it in by something like

read.table("file.dat", header = TRUE, row.names = 1)

Column names can be given explicitly via the col.names; explicit names override the header
line (if present).

3. Separator
Normally looking at the file will determine the field separator to be used, but with white-
space separated files there may be a choice between the default sep = "" which uses any
white space (spaces, tabs or newlines) as a separator, sep = " " and sep = "\t". Note that
the choice of separator affects the input of quoted strings.
If you have a tab-delimited file containing empty fields be sure to use sep = "\t".

4. Quoting
By default character strings can be quoted by either or ‘'’, and in each case all the
characters up to a matching quote are taken as part of the character string. The set of valid

quoting characters (which might be none) is controlled by the quote argument. For sep =
"\n" the default is changed to quote = "".

‘n? [)

If no separator character is specified, quotes can be escaped within quoted strings by im-
mediately preceding them by ‘\’, C-style.

If a separator character is specified, quotes can be escaped within quoted strings by doubling
them as is conventional in spreadsheets. For example

'One string isn''t two','"one more"
can be read by
read.table("testfile", sep = ",")

This does not work with the default separator.

Chapter 2: Spreadsheet-like data 7

10.

11.

12.

Missing values

By default the file is assumed to contain the character string NA to represent missing values,
but this can be changed by the argument na.strings, which is a vector of one or more
character representations of missing values.

Empty fields in numeric columns are also regarded as missing values.
In numeric columns, the values NaN, Inf and -Inf are accepted.
Unfilled lines

It is quite common for a file exported from a spreadsheet to have all trailing empty fields
(and their separators) omitted. To read such files set £i11 = TRUE.

White space in character fields

If a separator is specified, leading and trailing white space in character fields is regarded as
part of the field. To strip the space, use argument strip.white = TRUE.

Blank lines

By default, read.table ignores empty lines. This can be changed by setting
blank.lines.skip = FALSE, which will only be useful in conjunction with £i11 = TRUE,
perhaps to use blank rows to indicate missing cases in a regular layout.

Classes for the variables

Unless you take any special action, read.table reads all the columns as character vectors
and then tries to select a suitable class for each variable in the data frame. It tries in turn
logical, integer, numeric and complex, moving on if any entry is not missing and cannot
be converted.! If all of these fail, the variable is converted to a factor.

Arguments colClasses and as.is provide greater control. Specifying as.is = TRUE sup-
presses conversion of character vectors to factors (only). Using colClasses allows the
desired class to be set for each column in the input: it will be faster and use less memory.

Note that colClasses and as.is are specified per column, not per variable, and so include
the column of row names (if any).

Comments

By default, read.table uses ‘#’ as a comment character, and if this is encountered (except
in quoted strings) the rest of the line is ignored. Lines containing only white space and a
comment are treated as blank lines.

If it is known that there will be no comments in the data file, it is safer (and may be faster)
to use comment.char = "".

Escapes

Many OSes have conventions for using backslash as an escape character in text files, but
Windows does not (and uses backslash in path names). It is optional in R whether such
conventions are applied to data files.

Both read.table and scan have a logical argument allowEscapes. This is false by de-
fault, and backslashes are then only interpreted as (under circumstances described above)
escaping quotes. If this set to be true, C-style escapes are interpreted, namely the con-
trol characters \a, \b, \f, \n, \r, \t, \v and octal and hexadecimal representations like
\040 and \0x2A. Any other escaped character is treated as itself, including backslash. Note
that Unicode escapes such as \uxxxx are never interpreted.

Encoding
This can be specified by the fileEncoding argument, for example
fileEncoding = "UCS-2LE" # Windows 'Unicode' files

1 This is normally fast as looking at the first entry rules out most of the possibilities.

Chapter 2: Spreadsheet-like data 8

fileEncoding = "UTF-8"

If you know (correctly) the file’s encoding this will almost always work. However, we know

of one exception, UTF-8 files with a BOM. Some people claim that UTF-8 files should

never have a BOM, but some software (apparently including Excel:mac) uses them, and

many Unix-alike OSes do not accept them. So faced with a file which file reports as
intro.dat: UTF-8 Unicode (with BOM) text

it can be read on Windows by

read.table("intro.dat", fileEncoding = "UTF-8")

but on a Unix-alike might need
read.table("intro.dat", fileEncoding = "UTF-8-BOM")
(This would most likely work without specifying an encoding in a UTF-8 locale.)

Convenience functions read.csv and read.delim provide arguments to read.table appro-
priate for CSV and tab-delimited files exported from spreadsheets in English-speaking locales.
The variations read.csv2 and read.delim2 are appropriate for use in those locales where the
comma, is used for the decimal point and (for read.csv2) for spreadsheets which use semicolons
to separate fields.

If the options to read.table are specified incorrectly, the error message will usually be of
the form

Error in scan(file = file, what = what, sep = sep,
line 1 did not have 5 elements

or

Error in read.table("files.dat", header = TRUE)
more columns than column names

This may give enough information to find the problem, but the auxiliary function count.fields
can be useful to investigate further.

Efficiency can be important when reading large data grids. It will help to specify
comment.char = "", colClasses as one of the atomic vector types (logical, integer, numeric,
complex, character or perhaps raw) for each column, and to give nrows, the number of rows to
be read (and a mild over-estimate is better than not specifying this at all). See the examples in
later sections.

2.2 Fixed-width-format files

Sometimes data files have no field delimiters but have fields in pre-specified columns. This was
very common in the days of punched cards, and is still sometimes used to save file space.

Function read. fwf provides a simple way to read such files, specifying a vector of field widths.
The function reads the file into memory as whole lines, splits the resulting character strings,
writes out a temporary tab-separated file and then calls read.table. This is adequate for small
files, but for anything more complicated we recommend using the facilities of a language like
perl to pre-process the file.

Function read. fortran is a similar function for fixed-format files, using Fortran-style column
specifications.

2.3 Data Interchange Format (DIF)

An old format sometimes used for spreadsheet-like data is DIF, or Data Interchange format.

Function read.DIF provides a simple way to read such files. It takes arguments similar to
read.table for assigning types to each of the columns.

Chapter 2: Spreadsheet-like data 9

On Windows, spreadsheet programs often store spreadsheet data copied to the clipboard in
this format; read.DIF("clipboard") can read it from there directly. It is slightly more robust
than read.table("clipboard") in handling spreadsheets with empty cells.

2.4 Using scan directly

Both read.table and read.fwf use scan to read the file, and then process the results of scan.
They are very convenient, but sometimes it is better to use scan directly.

Function scan has many arguments, most of which we have already covered under
read.table. The most crucial argument is what, which specifies a list of modes of variables
to be read from the file. If the list is named, the names are used for the components of the
returned list. Modes can be numeric, character or complex, and are usually specified by an
example, e.g. 0, "" or 0i. For example

cat("2 3 5 7", "11 13 17 19", file="ex.dat", sep="\n")
scan(file="ex.dat", what=list(x=0, y="", z=0), flush=TRUE)
returns a list with three components and discards the fourth column in the file.

There is a function readLines which will be more convenient if all you want is to read whole
lines into R for further processing.

One common use of scan is to read in a large matrix. Suppose file matrix.dat just contains
the numbers for a 200 x 2000 matrix. Then we can use

A <- matrix(scan("matrix.dat", n = 200%x2000), 200, 2000, byrow = TRUE)

On one test this took 1 second (under Linux, 3 seconds under Windows on the same machine)
whereas

A <- as.matrix(read.table("matrix.dat"))
took 10 seconds (and more memory), and

A <- as.matrix(read.table("matrix.dat", header = FALSE, nrows = 200,
comment.char = "", colClasses = "numeric"))

took 7 seconds. The difference is almost entirely due to the overhead of reading 2000 separate
short columns: were they of length 2000, scan took 9 seconds whereas read.table took 18 if
used efficiently (in particular, specifying colClasses) and 125 if used naively.

Note that timings can depend on the type read and the data. Consider reading a million
distinct integers:

writeLines(as.character((1+1e6) :2e6), "ints.dat")

xi <- scan("ints.dat", what=integer(0), n=1e6) # 0.77s
xn <- scan("ints.dat", what=numeric(0), n=1e6) # 0.93s
xc <- scan("ints.dat", what=character(0), n=1e6) # 0.85s
xf <- as.factor(xc) # 2.2s
DF <- read.table("ints.dat") # 4.5s

and a million examples of a small set of codes:

code <- c("LMH", "SJC", "CHCH", "SPC", "SOM")
writeLines(sample(code, 1le6, replace=TRUE), "code.dat")
y <- scan("code.dat", what=character(0), n=1e6) # 0.44s

yf <- as.factor(y) # 0.21s
DF <- read.table("code.dat") # 4.9s
DF <- read.table("code.dat", nrows=1e6) # 3.6s

Note that these timings depend heavily on the operating system (the basic reads in Windows
take at least as twice as long as these Linux times) and on the precise state of the garbage
collector.

Chapter 2: Spreadsheet-like data

2.5 Re-shaping data

Sometimes spreadsheet data is in a compact format that gives the covariates for each subject
followed by all the observations on that subject. R’s modelling functions need observations in a
single column. Consider the following sample of data from repeated MRI brain measurements

Status
P

cC

cC

cC

cC

cC

cC

There are two covariates and up to four measurements on each subject. The data were exported

Age
23646
26174
27723
27193
24370
28359
25136

Vi
45190
355635
25691
30949
50542
58591
45801

from Excel as a file mr.csv.

We can use stack to help manipulate these data to give a single response.

zz <- read.csv("mr.csv", strip.white = TRUE)
zzz <- cbind(zz[gl(nrow(zz), 1, 4*nrow(zz)), 1:2], stack(zz[, 3:6]))

with result

Status
X1 P
X2 CcC
X3 CcC
X4 CC
X5 cC
X6 CcC
X7 CcC
X11 P

Function unstack goes in the opposite direction, and may be useful for exporting data.

Another way to do this is to use the function reshape, by

V2
50333
38227
25712
29693
51966
58803
45389

V3
55166
37911
26144
29754
54341
59435
47197

Age values ind

23646
26174
27723
27193
24370
28359
25136
23646

45190
35535
25691
30949
50542
58591
45801
50333

Vi
Vi
Vi
Vi
Vi
Vi
Vi
V2

va
56271
41184
26398
30772
54273
61292
47126

> reshape(zz, idvar="id",timevar="var",

varying=list(c("V1","V2","V3","V4")) ,direction="1ong")

Status
1.1 P 23
2.1 CC 26
3.1 CcC 27
4.1 CcC 27
5.1 CC 24
6.1 CC 28
7.1 CC 25
1.2 P 23
2.2 CC 26

The reshape function has a more complicated syntax than stack but can be used for data
where the ‘long’ form has more than the one column in this example. With direction="wide",

Age va
646
174
723
193
370
359
136
646
174

r

NN, P, PP, PR PR

N =~ N0 O WN -

reshape can also perform the opposite transformation.

Some people prefer the tools in packages reshape (https://CRAN.R-project.org/
package=reshape), reshape2 (https://CRAN.R-project.org/package=reshape2) and plyr

(https://CRAN.R-project.org/package=plyr).

https://CRAN.R-project.org/package=reshape
https://CRAN.R-project.org/package=reshape
https://CRAN.R-project.org/package=reshape2
https://CRAN.R-project.org/package=plyr
https://CRAN.R-project.org/package=plyr

Chapter 2: Spreadsheet-like data 11

2.6 Flat contingency tables

Displaying higher-dimensional contingency tables in array form typically is rather inconvenient.
In categorical data analysis, such information is often represented in the form of bordered two-
dimensional arrays with leading rows and columns specifying the combination of factor levels
corresponding to the cell counts. These rows and columns are typically “ragged” in the sense
that labels are only displayed when they change, with the obvious convention that rows are read
from top to bottom and columns are read from left to right. In R, such “flat” contingency tables
can be created using ftable, which creates objects of class "ftable" with an appropriate print
method.

As a simple example, consider the R standard data set UCBAdmissions which is a 3-
dimensional contingency table resulting from classifying applicants to graduate school at UC
Berkeley for the six largest departments in 1973 classified by admission and sex.

> data(UCBAdmissions)
> ftable(UCBAdmissions)

Dept A B C D E F
Admit Gender

Admitted Male 512 353 120 138 53 22
Female 89 17 202 131 94 24
Rejected Male 313 207 205 279 138 351
Female 19 8 391 244 299 317

The printed representation is clearly more useful than displaying the data as a 3-dimensional
array.

There is also a function read.ftable for reading in flat-like contingency tables from files.
This has additional arguments for dealing with variants on how exactly the information on row
and column variables names and levels is represented. The help page for read.ftable has some
useful examples. The flat tables can be converted to standard contingency tables in array form
using as.table.

Note that flat tables are characterized by their “ragged” display of row (and maybe also
column) labels. If the full grid of levels of the row variables is given, one should instead use
read.table to read in the data, and create the contingency table from this using xtabs.

12

3 Importing from other statistical systems

In this chapter we consider the problem of reading a binary data file written by another statistical
system. This is often best avoided, but may be unavoidable if the originating system is not
available.

In all cases the facilities described were written for data files from specific versions of the
other system (often in the early 2000s), and have not necessarily been updated for the most
recent versions of the other system.

3.1 Epilnfo, Minitab, S-PLUS, SAS, SPSS, Stata, Systat

The recommended package foreign (https://CRAN.R-project.org/package=foreign) pro-
vides import facilities for files produced by these statistical systems, and for export to Stata.
In some cases these functions may require substantially less memory than read.table would.
write.foreign (See Section 1.2 [Export to text files|, page 3) provides an export mechanism
with support currently for SAS, SPSS and Stata.

Epilnfo versions 5 and 6 stored data in a self-describing fixed-width text format.
read.epiinfo will read these .REC files into an R data frame. EpiData also produces data in
this format.

Function read.mtp imports a ‘Minitab Portable Worksheet’. This returns the components
of the worksheet as an R list.

Function read.xport reads a file in SAS Transport (XPORT) format and return a list of
data frames. If SAS is available on your system, function read.ssd can be used to create and
run a SAS script that saves a SAS permanent dataset (.ssd or .sas7bdat) in Transport format.
It then calls read.xport to read the resulting file. (Package Hmisc (https://CRAN.R-project.
org/package=Hmisc) has a similar function sas.get, also running SAS.) For those without ac-
cess to SAS but running on Windows, the SAS System Viewer (a zero-cost download) can be
used to open SAS datasets and export them to e.g. .csv format.

Function read.S which can read binary objects produced by S-PLUS 3.x, 4.x or 2000 on
(32-bit) Unix or Windows (and can read them on a different OS). This is able to read many but
not all S objects: in particular it can read vectors, matrices and data frames and lists containing
those.

Function data.restore reads S-PLUS data dumps (created by data.dump) with the same
restrictions (except that dumps from the Alpha platform can also be read). It should be possible
to read data dumps from S-PLUS 5.x and later written with data.dump(oldStyle=T).

If you have access to S-PLUS, it is usually more reliable to dump the object(s) in S-PLUS
and source the dump file in R. For S-PLUS 5.x and later you may need to use dump(...,
0ldStyle=T), and to read in very large objects it may be preferable to use the dump file as a
batch script rather than use the source function.

Function read.spss can read files created by the ‘save’ and ‘export’ commands in SPSS. It
returns a list with one component for each variable in the saved data set. SPSS variables with
value labels are optionally converted to R factors.

SPSS Data Entry is an application for